Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Pulm Pharmacol Ther ; 80: 102212, 2023 06.
Article in English | MEDLINE | ID: covidwho-2256920

ABSTRACT

There is a strong scientific rationale to use nebulised unfractionated heparin (UFH) in treating patients with COVID-19. This pilot study investigated whether nebulised UFH was safe and had any impact on mortality, length of hospitalisation and clinical progression, in the treatment of hospitalised patients with COVID-19. This parallel group, open label, randomised trial included adult patients with confirmed SARS-CoV-2 infection admitted to two hospitals in Brazil. One hundred patients were planned to be randomised to either "standard of care" (SOC) or SOC plus nebulized UFH. The trial was stopped after randomisation of 75 patients due to falling COVID-19 hospitalisation rates. Significance tests were 1-sided test (10% significance level). The key analysis populations were intention to treat (ITT) and modified ITT (mITT) which excluded (from both arms) subjects admitted to ITU or who died within 24 h of randomisation. In the ITT population (n = 75), mortality was numerically lower for nebulised UFH (6 out of 38 patients; 15.8%) versus SOC (10 out of 37 patients; 27.0%), but not statistically significant; odds ratio (OR) 0.51, p = 0.24. However, in the mITT population, nebulised UFH reduced mortality (OR 0.2, p = 0.035). Length of hospital stay was similar between groups, but at day 29, there was a greater improvement in ordinal score following treatment with UFH in the ITT and mITT populations (p = 0.076 and p = 0.012 respectively), while mechanical ventilation rates were lower with UFH in the mITT population (OR 0.31; p = 0.08). Nebulised UFH did not cause any significant adverse events. In conclusion, nebulised UFH added to SOC in hospitalised patients with COVID-19 was well tolerated and showed clinical benefit, particularly in patients who received at least 6 doses of heparin. This trial was funded by The J.R. Moulton Charity Trust and registered under REBEC RBR-8r9hy8f (UTN code: U1111-1263-3136).


Subject(s)
COVID-19 , Adult , Humans , Heparin/adverse effects , Pilot Projects , SARS-CoV-2 , Hospitalization , Treatment Outcome
2.
Br J Clin Pharmacol ; 88(7): 3272-3287, 2022 07.
Article in English | MEDLINE | ID: covidwho-1666292

ABSTRACT

There is significant interest in the potential for nebulised unfractionated heparin (UFH), as a novel therapy for patients with COVID-19 induced acute hypoxaemic respiratory failure requiring invasive ventilation. The scientific and biological rationale for nebulised heparin stems from the evidence for extensive activation of coagulation resulting in pulmonary microvascular thrombosis in COVID-19 pneumonia. Nebulised delivery of heparin to the lung may limit alveolar fibrin deposition and thereby limit progression of lung injury. Importantly, laboratory studies show that heparin can directly inactivate the SARS-CoV-2 virus, thereby prevent its entry into and infection of mammalian cells. UFH has additional anti-inflammatory and mucolytic properties that may be useful in this context. METHODS AND INTERVENTION: The Can nebulised HepArin Reduce morTality and time to Extubation in Patients with COVID-19 Requiring invasive ventilation Meta-Trial (CHARTER-MT) is a collaborative prospective individual patient data analysis of on-going randomised controlled clinical trials across several countries in five continents, examining the effects of inhaled heparin in patients with COVID-19 requiring invasive ventilation on various endpoints. Each constituent study will randomise patients with COVID-19 induced respiratory failure requiring invasive ventilation. Patients are randomised to receive nebulised heparin or standard care (open label studies) or placebo (blinded placebo-controlled studies) while under invasive ventilation. Each participating study collect a pre-defined minimum dataset. The primary outcome for the meta-trial is the number of ventilator-free days up to day 28 day, defined as days alive and free from invasive ventilation.


Subject(s)
COVID-19 Drug Treatment , Noninvasive Ventilation , Respiratory Insufficiency , Airway Extubation , Heparin , Humans , Lung , Randomized Controlled Trials as Topic , Respiratory Insufficiency/chemically induced , SARS-CoV-2 , Treatment Outcome
4.
Br J Clin Pharmacol ; 88(6): 2802-2813, 2022 06.
Article in English | MEDLINE | ID: covidwho-1608393

ABSTRACT

AIMS: To determine the safety and efficacy-potential of inhaled nebulised unfractionated heparin (UFH) in the treatment of hospitalised patients with COVID-19. METHODS: Retrospective, uncontrolled multicentre single-arm case series of hospitalised patients with laboratory-confirmed COVID-19, treated with inhaled nebulised UFH (5000 IU q8h, 10 000 IU q4h, or 25 000 IU q6h) for 6 ± 3 (mean ± standard deviation) days. Outcomes were activated partial thromboplastin time (APTT) before treatment (baseline) and highest-level during treatment (peak), and adverse events including bleeding. Exploratory efficacy outcomes were oxygenation, assessed by ratio of oxygen saturation to fraction of inspired oxygen (FiO2 ) and FiO2 , and the World Health Organisation modified ordinal clinical scale. RESULTS: There were 98 patients included. In patients on stable prophylactic or therapeutic systemic anticoagulant therapy but not receiving therapeutic UFH infusion, APTT levels increased from baseline of 34 ± 10 seconds to a peak of 38 ± 11 seconds (P < .0001). In 3 patients on therapeutic UFH infusion, APTT levels did not significantly increase from baseline of 72 ± 20 to a peak of 84 ± 28 seconds (P = .17). Two patients had serious adverse events: bleeding gastric ulcer requiring transfusion and thigh haematoma; both were on therapeutic anticoagulation. Minor bleeding occurred in 16 patients, 13 of whom were on therapeutic anticoagulation. The oxygen saturation/FiO2 ratio and the FiO2 worsened before and improved after commencement of inhaled UFH (change in slope, P < .001). CONCLUSION: Inhaled nebulised UFH in hospitalised patients with COVID-19 was safe. Although statistically significant, inhaled nebulised UFH did not produce a clinically relevant increase in APTT (peak values in the normal range). Urgent randomised evaluation of nebulised UFH in patients with COVID-19 is warranted and several studies are currently underway.


Subject(s)
COVID-19 Drug Treatment , Heparin , Anticoagulants , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Heparin/adverse effects , Humans , Partial Thromboplastin Time , Retrospective Studies
5.
Lancet Respir Med ; 9(4): 360-372, 2021 04.
Article in English | MEDLINE | ID: covidwho-1045088

ABSTRACT

BACKGROUND: Mechanical ventilation in intensive care for 48 h or longer is associated with the acute respiratory distress syndrome (ARDS), which might be present at the time ventilatory support is instituted or develop afterwards, predominantly during the first 5 days. Survivors of prolonged mechanical ventilation and ARDS are at risk of considerably impaired physical function that can persist for years. An early pathogenic mechanism of lung injury in mechanically ventilated, critically ill patients is inflammation-induced pulmonary fibrin deposition, leading to thrombosis of the microvasculature and hyaline membrane formation in the air sacs. The main aim of this study was to determine if nebulised heparin, which targets fibrin deposition, would limit lung injury and thereby accelerate recovery of physical function in patients with or at risk of ARDS. METHODS: The Can Heparin Administration Reduce Lung Injury (CHARLI) study was an investigator-initiated, multicentre, double-blind, randomised phase 3 trial across nine hospitals in Australia. Adult intensive care patients on invasive ventilation, with impaired oxygenation defined by a PaO2/FiO2 ratio of less than 300, and with the expectation of invasive ventilation beyond the next calendar day were recruited. Key exclusion criteria were heparin allergy, pulmonary bleeding, and platelet count less than 50 X 109/L. Patients were randomly assigned 1:1, with stratification by site and using blocks of variable size and random seed, via a web-based system, to either unfractionated heparin sodium 25 000 IU in 5 mL or identical placebo (sodium chloride 0·9% 5 mL), administered using a vibrating mesh membrane nebuliser every 6 h to day 10 while invasively ventilated. Patients, clinicians, and investigators were masked to treatment allocation. The primary outcome was the Short Form 36 Health Survey Physical Function Score (out of 100) of survivors at day 60. Prespecified secondary outcomes, which are exploratory, included development of ARDS to day 5 among at-risk patients, deterioration of the Murray Lung Injury Score (MLIS) to day 5, mortality at day 60, residence of survivors at day 60, and serious adverse events. Analyses followed the intention-to-treat principle. There was no imputation of missing data. The trial is registered with the Australian and New Zealand Clinical Trials Register, number ACTRN12612000418875 . FINDINGS: Between Sept 4, 2012, and Aug 23, 2018, 256 patients were randomised. Final follow-up was on Feb 25, 2019. We excluded three patients who revoked consent and one ineligible participant who received no intervention. Of 252 patients included in data analysis, the mean age was 58 years (SD 15), 157 (62%) were men, and 118 (47%) had ARDS. 128 (51%) patients were assigned to the heparin group and 124 (49%) to the placebo group, all of whom received their assigned intervention. Survivors in the heparin group (n=97) had similar SF-36 Physical Function Scores at day 60 compared to the placebo group (n=94; mean 53·6 [SD 31·6] vs 48·7 [35·7]; difference 4·9 [95% CI -4·8 to 14·5]; p=0·32). Compared with the placebo group, the heparin group had fewer cases of ARDS develop to day 5 among the at-risk patients (nine [15%] of 62 patients vs 21 [30%] of 71 patients; hazard ratio 0·46 [95% CI 0·22 to 0·98]; p=0·0431), less deterioration of the MLIS to day 5 (difference -0·14 [-0·26 to -0·02]; p=0·0215), similar day 60 mortality (23 [18%] of 127 patients vs 18 [15%] of 123 patients; odds ratio [OR] 1·29 [95% CI 0·66 to 2·53]; p=0·46), and more day 60 survivors at home (86 [87%] of 99 patients vs 73 [73%] of 100 patients; OR 2·45 [1·18 to 5·08]; p=0·0165). A similar number of serious adverse events occurred in each group (seven [5%] of 128 patients in the heparin group vs three [2%] of 124 patients in the placebo group; OR 2·33 [0·59 to 9·24]; p=0·23), which were a transient increase in airway pressure during nebulisation (n=3 in the heparin group), major non-pulmonary bleeding (n=2 in each group), haemoptysis (n=1 in the heparin group), tracheotomy site bleeding (n=1 in the heparin group), and hypoxaemia during nebulisation (n=1 in the placebo group). INTERPRETATION: In patients with or at risk of ARDS, nebulised heparin did not improve self-reported performance of daily physical activities, but was well tolerated and exploratory outcomes suggest less progression of lung injury and earlier return home. Further research is justified to establish if nebulised heparin accelerates recovery in those who have or are at risk of ARDS. FUNDING: Rowe Family Foundation, TR and RB Ditchfield Medical Research Endowment Fund, Patricia Madigan Charitable Trust, and The J and R McGauran Trust Fund.


Subject(s)
Critical Care/methods , Heparin/administration & dosage , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/epidemiology , Activities of Daily Living , Administration, Inhalation , Adult , Aged , Australia/epidemiology , Double-Blind Method , Female , Hemoptysis/chemically induced , Hemoptysis/epidemiology , Heparin/adverse effects , Hospital Mortality , Humans , Hypoxia/chemically induced , Hypoxia/epidemiology , Incidence , Male , Middle Aged , Nebulizers and Vaporizers , Placebos/administration & dosage , Placebos/adverse effects , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/prevention & control , Self Report/statistics & numerical data , Severity of Illness Index , Survivors/statistics & numerical data , Time Factors , Treatment Outcome
6.
Br J Clin Pharmacol ; 87(8): 3075-3091, 2021 08.
Article in English | MEDLINE | ID: covidwho-1035466

ABSTRACT

AIMS: Inhaled nebulised unfractionated heparin (UFH) has a strong scientific and biological rationale that warrants urgent investigation of its therapeutic potential in patients with COVID-19. UFH has antiviral effects and prevents the SARS-CoV-2 virus' entry into mammalian cells. In addition, UFH has significant anti-inflammatory and anticoagulant properties, which limit progression of lung injury and vascular pulmonary thrombosis. METHODS: The INHALEd nebulised unfractionated HEParin for the treatment of hospitalised patients with COVID-19 (INHALE-HEP) metatrial is a prospective individual patient data analysis of on-going randomised controlled trials and early phase studies. Individual studies are being conducted in multiple countries. Participating studies randomise adult patients admitted to the hospital with confirmed SARS-CoV-2 infection, who do not require immediate mechanical ventilation, to inhaled nebulised UFH or standard care. All studies collect a minimum core dataset. The primary outcome for the metatrial is intubation (or death, for patients who died before intubation) at day 28. The secondary outcomes are oxygenation, clinical worsening and mortality, assessed in time-to-event analyses. Individual studies may have additional outcomes. ANALYSIS: We use a Bayesian approach to monitoring, followed by analysing individual patient data, outcomes and adverse events. All analyses will follow the intention-to-treat principle, considering all participants in the treatment group to which they were assigned, except for cases lost to follow-up or withdrawn. TRIAL REGISTRATION, ETHICS AND DISSEMINATION: The metatrial is registered at ClinicalTrials.gov ID NCT04635241. Each contributing study is individually registered and has received approval of the relevant ethics committee or institutional review board. Results of this study will be shared with the World Health Organisation, published in scientific journals and presented at scientific meetings.


Subject(s)
COVID-19 , Heparin , Adult , Bayes Theorem , Humans , Prospective Studies , SARS-CoV-2 , Treatment Outcome
7.
Am J Respir Crit Care Med ; 202(9): 1244-1252, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-901518

ABSTRACT

Rationale: A novel model of phenotypes based on set thresholds of respiratory system compliance (Crs) was recently postulated in context of coronavirus disease (COVID-19) acute respiratory distress syndrome (ARDS). In particular, the dissociation between the degree of hypoxemia and Crs was characterized as a distinct ARDS phenotype.Objectives: To determine whether such Crs-based phenotypes existed among patients with ARDS before the COVID-19 pandemic and to closely examine the Crs-mortality relationship.Methods: We undertook a secondary analysis of patients with ARDS, who were invasively ventilated on controlled modes and enrolled in a large, multinational, epidemiological study. We assessed Crs, degree of hypoxemia, and associated Crs-based phenotypic patterns with their characteristics and outcomes.Measurements and Main Results: Among 1,117 patients with ARDS who met inclusion criteria, the median Crs was 30 (interquartile range, 23-40) ml/cm H2O. One hundred thirty-six (12%) patients had preserved Crs (≥50 ml/cm H2O; phenotype with low elastance ["phenotype L"]), and 827 (74%) patients had poor Crs (<40 ml/cm H2O; phenotype with high elastance ["phenotype H"]). Compared with those with phenotype L, patients with phenotype H were sicker and had more comorbidities and higher hospital mortality (32% vs. 45%; P < 0.05). A near complete dissociation between PaO2/FiO2 and Crs was observed. Of 136 patients with phenotype L, 58 (43%) had a PaO2/FiO2 < 150. In a multivariable-adjusted analysis, the Crs was independently associated with hospital mortality (adjusted odds ratio per ml/cm H2O increase, 0.988; 95% confidence interval, 0.979-0.996; P = 0.005).Conclusions: A wide range of Crs was observed in non-COVID-19 ARDS. Approximately one in eight patients had preserved Crs. PaO2/FiO2 and Crs were dissociated. Lower Crs was independently associated with higher mortality. The Crs-mortality relationship lacked a clear transition threshold.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Lung Compliance/physiology , Pandemics , Pneumonia, Viral/epidemiology , Respiratory Distress Syndrome/physiopathology , COVID-19 , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Respiratory Function Tests , SARS-CoV-2
8.
Crit Care ; 24(1): 454, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-662500

ABSTRACT

Nebulised unfractionated heparin (UFH) has a strong scientific and biological rationale and warrants urgent investigation of its therapeutic potential, for COVID-19-induced acute respiratory distress syndrome (ARDS). COVID-19 ARDS displays the typical features of diffuse alveolar damage with extensive pulmonary coagulation activation resulting in fibrin deposition in the microvasculature and formation of hyaline membranes in the air sacs. Patients infected with SARS-CoV-2 who manifest severe disease have high levels of inflammatory cytokines in plasma and bronchoalveolar lavage fluid and significant coagulopathy. There is a strong association between the extent of the coagulopathy and poor clinical outcomes.The anti-coagulant actions of nebulised UFH limit fibrin deposition and microvascular thrombosis. Trials in patients with acute lung injury and related conditions found inhaled UFH reduced pulmonary dead space, coagulation activation, microvascular thrombosis and clinical deterioration, resulting in increased time free of ventilatory support. In addition, UFH has anti-inflammatory, mucolytic and anti-viral properties and, specifically, has been shown to inactivate the SARS-CoV-2 virus and prevent its entry into mammalian cells, thereby inhibiting pulmonary infection by SARS-CoV-2. Furthermore, clinical studies have shown that inhaled UFH safely improves outcomes in other inflammatory respiratory diseases and also acts as an effective mucolytic in sputum-producing respiratory patients. UFH is widely available and inexpensive, which may make this treatment also accessible for low- and middle-income countries.These potentially important therapeutic properties of nebulised UFH underline the need for expedited large-scale clinical trials to test its potential to reduce mortality in COVID-19 patients.


Subject(s)
Coronavirus Infections/drug therapy , Heparin/administration & dosage , Nebulizers and Vaporizers , Pneumonia, Viral/drug therapy , COVID-19 , Humans , Pandemics , Randomized Controlled Trials as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL